接自《时间简史》第三章膨胀的宇宙58页,多看阅读出版。


在20年代,当天文学家开始观察其他星系中的恒星光谱时,他们发现了某些最奇异的现象:它们和我们的银河系一样具有吸收的特征线族,只是所有这些线族都向光谱的红端移动了同样的相对量。为了理解其含意,我们必须首先理解多普勒效应。正如我们已经看到的,可见光由电磁场的起伏或波动构成。光的波长(或者相邻波峰之间的距离)极其微小,约为0.0000004至0.0000008米。光的不同波长正是人眼看成不同颜色的东西,最长的波长出现在光谱的红端,而最短的波长在光谱的蓝端。现在想像在离开我们固定的距离处有一个光源——例如一颗恒星——以固定的波长发出光波。显然,我们接收到的波长和发射时的波长一样(星系的引力场没有强到足以对它产生明显的效应)。现在假定这恒星光源开始向我们运动。当光源发出第二个波峰时,它离开我们较近一些,这样两个波峰之间的距离比恒星静止时较小。这意味着,我们接收到的波的波长比恒星静止时较短。相应地,如果光源离开我们运动,我们接收的波的波长将较长。这意味着,当恒星离开我们而去时,它们的光谱向红端移动(红移),而当恒星趋近我们而来时,光谱则被蓝移。这个称作多普勒效应的频率和速度的关系是我们日常熟悉的。例如听一辆小汽车在路上驶过:当它趋近时,它的发动机的音调变高(对应于声波的短波长和高频率);当它经过我们身边而离开时,它的音调变低。光波或射电波的行为与之类似。警察就是利用多普勒效应的原理,靠测量射电波脉冲从车上反射回来的波长来测定车速。